Coronavirus: A Possible Cause of Reduced

2 Male Fertility

- 3 Running title: Coronavirus and male fertility
- 4 Chuan Huang, Ph.D., a,b,*, Xiren Ji, M.S. a,*, Wenjun Zhou, Ph.D., a, Zhenghui Huang, Ph.D., a,b,
- 5 Xiangjie Peng, M.S.^b, Liqing Fan, Ph.D., a,b, Ge Lin Ph.D., a,b, Wenbing Zhu, Ph.D., a,b
- a. Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central
- 7 South University, Changsha, Hunan, People's Republic of China
- 8 b. Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, People's
- 9 Republic of China
- 10 *These authors contributed equally to this work.
- *Correspondence to: Wenbing Zhu, Ph.D., Reproductive & Genetic Hospital of
- 12 CITIC-Xiangya. No. 87, Xiangya Road, Changsha, Hunan 410008, People's Republic of
- 13 China
- 14 E-mail: Dr. WB Zhu (zhuwenbing0971@sina.com)
- 15 Abstract
- In lately December 2019, a novel coronavirus (SARS-CoV-2) outbreak occurred in
- Wuhan, PR China. It is a high contagious virus that has threatened human health worldwide.
- 18 SARS-CoV-2 infection, termed COVID-19, causes rapidly developing lung lesions that can
- 19 lead to multiple organ failure in a short period. Whenever a novel virus emerges, reproductive
- 20 risk assessments should be performed after infection. In this review, we show that male
- 21 fertility might be damaged by coronavirus associated with (i) direct cytopathic effects derived
- from viral replication and viral dissemination in the testis; and (ii) indirect damage to male This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/ANDR.12907

This article is protected by copyright. All rights reserved

fertility derived from immunopathology. In this review, we briefly describe the impaired fertility of humans and animals infected with coronaviruses to deduce the impact of the new coronavirus on male fertility. Together with information related to other coronaviruses, we extrapolate this knowledge to the new coronavirus SARS-CoV-2, which may have a significant impact on our understanding of the pathophysiology of this new virus.

Keywords: Coronavirus, Fertility, Male, SARS-CoV-2, Testis

1. Introduction

Coronaviruses are the largest family of positive-stranded RNA viruses, which includes 30 members at present. They are widely distributed in nature, including infections of humans and other mammals. In recent years, new coronaviruses have caused problems worldwide in cycles, such as severe acute respiratory syndrome coronavirus (SARS-CoV) occurring in 2002, and Middle East respiratory syndrome coronavirus (MERS-CoV) being first identified in 2012. In 2019, a new highly contagious virus broke out in Wuhan, Hubei province, China, termed SARS-CoV-2, representing the seventh member of enveloped RNA coronaviruses¹. The 2019 novel coronavirus disease (COVID-19) caused by SARS-CoV-2 has common clinical manifestations such as fever, dry cough, and in severe cases, multiple organ damage ²⁻⁴.

Regarding the critical molecule for SARS-CoV-2 transmission, the receptor angiotensin I converting Enzyme 2 (ACE2) for virus cell entry and transmembrane serine protease 2 TMPRSS2 for priming the S protein⁵, are co-expressed in the testis and male genital tract⁶, which suggests a high possibility that the virus targets the testis and male genital tract during

infection. It <u>was</u> reported that over 25 viruses could <u>enter human semen</u> and negatively affect sperm or male fertility⁷, such as HSV ⁸ and HIV ⁹. Whether SARS-CoV-2 may have the same the effect on males is an <u>important</u> question that <u>was not answered</u> unambiguously in a preliminary investigation¹⁰.

45

46

48

50

51

52

53

54

55

56

57

58

59

60

61

62

64

65

66

To date, studies 11-13 have confirmed the absence of SARS-CoV-2 RNA in the semen of patients with COVID-19. Conversely, The results of Li et al.'s study were inconsistent with those of previous studies and detected of SARS-CoV-2 in 6 of 38 semen samples¹⁴. Similarly, Yang et_al. reported that one case (1/12) with a high viral load was positive for viral RNA after post-mortem examinations of testicular tissue¹⁵, which supported the idea that high viral loads in patients with severe disease symptoms might reach the threshold to cross the blood-testis barrier¹⁶. On the other hand, a study showed that compared with patients with mild disease, patients with severe COVID-19 have significantly lower testosterone levels¹⁷, suggesting that the co-expression of ACE2 and TMPRSS2 on Leydig cells might make them susceptible to SARS-CoV-2 infection and thus compromise testosterone secretion¹⁸. However, considering the high false-negative results for SARS-CoV-2 using RT-PCR¹⁹, as well as the limitation of the small sample size and selection bias mostly obtained from recovering mild cases¹⁰, we still need to be cautious when evaluating this data. Nevertheless, it is well known that coronaviruses can contribute to high morbidity and mortality in both humans and animals ^{20,21}. A study has demonstrated orchitis in patients with SARS, with detrimental effects in the testis, suggesting that coronavirus can infect the male reproductive tract and impair male reproduction ²². SARS-CoV-2 and SARS-CoV share some common clinical manifestations, which supports the hypothesis that the new coronavirus might directly infect the testes and

male reproductive system. Therefore, we should be vigilant about the impact on male reproduction in patients with COVID-19. In addition, the blood-testis barrier <u>might</u> allow the testes to act as a special reservoir to protect viruses against antiviral agents²³, which is a key reason for considering the testes as a particularly important organ for study in the context of the SARS-CoV-2 pandemic, and it is especially important because the coronavirus family has been identified the culprit causing orchitis in both humans (SARS-CoV)²² and animals (feline coronavirus and avian coronavirus) ^{24,25}. Using evidence from previous studies of coronavirus-infected animals and humans, the implications of this review may help us to understand the impact of SARS-CoV-2 on male reproductive capacity.

2. Direct virus-induced cytopathic effects

Various viruses can replicate in the male reproductive tract, such as HEV ²⁶ and ZIKV ^{27,28}, which eventually lead to testicular atrophy and male infertility. Viral infection of the male genital tract can provide insights into possible male fertility impairment after SARS-CoV-2 infection. SARS-CoV-2 enters cells by binding ACE2 and via priming by TMPRSS2. ACE2 is a membrane-associated secretase that is expressed primarily on endothelial cells and is the host cell receptor for SARS and SARS-CoV-2 ²⁹⁻³¹. Notably, ACE2 is highly tissue-specific, with significant levels being detected only in the heart, kidneys, testes, and gastrointestinal tract ³²⁻³⁴. In the testes, ACE2 is expressed only in spermatogenic cells and testis somatic cells, suggesting a high potential <u>for</u> testicular damage and spermatogenesis disruption when <u>the virus combines with</u> this metalloprotease³⁵. TMPRSS2, as an essential protease for viral infection, <u>is highly expressed</u> in spermatogonia and #Leydig cells

implied that the testis might be a high-risk organ that is vulnerable to SARS-CoV-2 infection, which might result in testicular degeneration and male infertility. SARS coronaviruses, whose expressed proteins share 76% amino acid sequence identity with those of SARS-CoV-2, were detected in testis somatic cells ³⁶. This observation supports the hypothesis that the SARS-CoV-2 might concentrate on testis cells to dysregulate their function.

2.1 Direct virus-induced damage of the testis

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Viral replication in cells contributes directly to microscopy-detected lesions, which eventually result in spermatogonia necrosis ²⁶, such as in a ram model of infection by Bluetongue virus (BTV) (an arbovirus of ruminants), which showed testicular parenchyma damage and the destruction of the Sertoli cells caused by viral replication-induced cytopathic effects ³⁷. Coronaviruses might use a similar mechanism in humans to impair male fertility. ACE2 is the crucial determinant of coronavirus infection, tissue tropism, and subsequent viral replication^{38,39}. The expression pattern of ACE2 in adult human testis at the level of single-cell transcriptomes was shown to be predominantly enriched in Leydig and Sertoli cells⁶. Besides, alternative receptor <u>Basigin</u> (BSG) and protease <u>Cathepsin L</u> (CTSL) were also detected in Leydig cells⁴⁰, which can mediate SARS-CoV-2 into cells. Data from autopsies of 12 patients with COVID-19 showed a dramatic reduction in Leydig cells in the interstitium¹⁵, supporting the speculation that SARS-CoV-2 could display tropism for Leydig cells, <u>ultimately</u> leading to ultrastructural lesions and <u>decreased numbers of</u> Leydig cells. Leydig cells occur in clusters between blood vessels and seminiferous tubules, producing the majority of androgens in men 41. The replication of SARS-CoV-2 testosterone-producing Leydig cells might disrupt testosterone production. Indeed, a recent

study confirmed that patients with COVID-19 suffered hypogonadotropic hypogonadism as the disease the progressed, implying that the secretory function of Leydig cells might be impaired by the novel coronavirus¹⁷. Testosterone is essential to preserve male fertility and to support Sertoli cell maturation and the development of Leydig cells ⁴². Extensive evidence from clinical and laboratory studies implied that testosterone deficiency is accompanied by atrophy of the testicular parenchyma and degradation in the seminiferous tubules ^{43,44}, in summary, testosterone is necessary for men to maintain the blood-testis barrier, spermatogenesis, and fertility. Alterations in male sex hormone levels induced by SARS-CoV-2 might negatively affect male reproduction. Therefore, special attention should be paid to andrology examinations and hormone assessments on men recovering from COVID-19, as well as exploring the possible long-term outcomes of SARS-CoV-2 infection. Sertoli cells are the only somatic cells in the tubules that directly contact with spermatogenic cells, and control the differentiation of spermatogenic cells via paracrine signals ⁴⁵. Inhibin B is secreted by Sertoli cells, and compared with follicle-stimulating hormone (FSH) or luteinizing hormone (LH), it is an ideal marker for spermatogenesis and a better indicator of sterility 46,47. SARS-CoV-2 has a high affinity for human ACE2, which suggests that the virus might concentrate on Sertoli cells. Indeed, inhibin B levels decreased after hepatitis E virus infection in mice, which was attributed to damage of the Sertoli cells in the testes ²⁶. Accumulating evidence suggests that the coronavirus family has an affinity for these testes cells, for example, Avian infectious bronchitis virus (IBV), a subtype of coronavirus, can cause acute respiratory infections in birds 48, and was tetected in Sertoli cells of the testes of infected roosters using immunofluorescence 49. Roosters vaccinated with live

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

attenuated IBV showed significantly reduced serum androgen concentrations compared with non-vaccinated roosters and could cause infertility in roosters ⁵⁰. Considering that IBV causes a similar severe acute respiratory syndrome to SARS-CoV-2, we hypothesized that the same mechanism might be used by SARS-CoV-2 to spread in Sertoli cells. <u>In addition</u>, roosters vaccinated <u>with</u> live attenuated IBV might provide an animal model of how SARS-CoV-2 replicates in cells and causes pathogenic effects in the testis.

Additionally, coronavirus might directly disrupt the microenvironment of the testis that supports spermatogenesis. In CoV-infected roosters, histological analysis revealed the disruption of seminiferous tubules and loss of the basement membrane, leading to the destruction of the spermatogenesis microenvironment, which contributed to the reduction of the live sperm concentration ⁵¹. Thus, testicular degeneration is possibly the result of several overlapping factors once a coronavirus infects the male genital tract, and this <u>might</u> also be the case for SARS-CoV-2.

2.2 Virus-induced damage of spermatogenesis directly

Viruses can be detected in semen directly. SARS-CoV-2 RNA has been isolated from rectal swabs and respiratory tract swabs⁵². <u>Currently, the question of whether the virus can infect semen needs an answer.</u> According to a recent study of scRNA-seq data in adult human testes, ACE2 and TMPRSS2 are highly co-expressed in spermatogonia, which are enriched in the gene ontology (GO) categories relating to viral reproduction and transmission⁶. Therefore, it is reasonable to hypothesize that there is a high risk of SARS-CoV-2 presence in seminal fluid⁵³. However, a few case reports have investigated this issue, and <u>the</u> presence of SARS-COV-2 in semen <u>remains ambiguous</u>¹¹⁻¹⁴. Notably, gene ontology (GO) enrichment

analysis illustrated that cell junction and immunity-related GO terms were enriched in ACE2-positive Leydig/Sertoli cells; therefore, cell-cell junctions <u>might</u> allow the transfer of SARS-CoV-2⁶, which might represent one explanation of the highly contagious nature of this novel coronavirus and could have implications <u>for sexual</u> and reproductive <u>behavior</u>⁵⁴. <u>Taken together</u>, there is a critical need to verify virus infection semen and <u>whether</u> sexual transmission of SARS-CoV-2 <u>can indeed occur</u>.

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

With regard to research on coronavirus-infection animals, IBV has been isolated from testicles and semen in roosters 51,55, and when insemination using IBV-spiked semen was performed, IBV RNA could be detected in all the hens, and the weight of eggs laid by the hens inseminated with IBV-spiked semen was significantly reduced ⁵⁵. Knowledge of other coronaviruses present in semen might encourages researchers to look at semen and sexual transmission, to determine whether SARS-CoV-2 can be sexually transmitted like IBV; however, the results will need to be cautiously interpreted. Nevertheless, we should remain vigilant to this possibility, which has important implications in reproductive medicine, especially viral transmission facilitated by ART, such as intracytoplasmic sperm injection (ICSI)⁵⁶, sperm cryopreservation, and the prevention of transmission. During this epidemic, sperm cryobank must introduce precautionary measures: first, we recommend that semen from SARS-VOV-2-positive men is cryopreserved in a highly secure, separate container, such as a vapor cryostorage tank. Secondly, all donors must undergo mandatory SARS-COV-2 testing. Thirdly, abstinence or condom use might be considered as preventive measure for patients with COVID-19.

Virus binding to ACE2-expressing spermatogonia would <u>disrupt</u> spermatogenesis⁶.

Rooster vaccination with coronavirus caused a significant reduction in daily sperm production ^{25,57}. A recent report also confirmed that semen quality parameters were impaired in patients with moderate infection of COVID-19⁵⁸. Hence, the risk of SARS-CoV-2 virus infection to semen parameters may not be negligible. Notably, the long-term impact on semen parameters of SARS-CoV-2 infection, as well as semen examination, is required during follow-up patients recovering from COVID-19, especially men who plan to have children.

2.3 Direct virus-induced damage of the epididymis

In animal models of coronavirus infection, one of the major clinical symptoms is epididymal stone formation ^{51,59,60}. IBV replication in roosters' testes <u>might</u> result in severe cellular micropathological damage, which in the long-term can lead to the presence of epididymal stones. The presence of stones is associated with reduced fertility and adverse effects on sperm function⁶¹, eventually resulting in the collapse of the seminiferous tubules and cessation of spermatogenesis. The epididymis is a crucial region for sperm maturation, which is pivotal for sperm to obtain the motile ability and fertile capacity. Dysfunction in this area can compromise sperm maturation and further impair sperm quality, such as decreased sperm motility, increased DNA damage, changed membrane lipids, and <u>the</u> acrosome reaction⁶². If the behavior of coronavirus infection in humans is similar to that in animal models, we should pay attention to the epididymis to protect it from SARS-CoV-2-induced destruction.

In view of these result, we suggest prompting a comprehensive genitourinary examination for <u>patients with COVID-19</u>, <u>including</u> alterations in semen parameters, such as <u>the</u> acrosome reaction, DNA damage, and sperm motility.

3. Indirect immune-mediated damage to male fertility

The testicle is an immunologically privileged organ, the blood-testis barrier (BTB) protects the testes against pathogen invasion ⁶³. In healthy fertile men, various immune cells and cytokines produced by non-immune cells are indispensable to ensure male fertility⁶⁴, in which they maintain the testicular microenvironment balance and male reproductive health within the intricate and active environment of the seminiferous epithelium. Testicular tissue development benefits from immune cells and their cytokines, and the immune response is critical to control and eliminate viral infection⁶⁵. Cytokines are important for the immune response to viral infections by regulating the expansion and location of leukocytes. However, infection and inflammation might disrupt the immune balance in the body, either through immune insufficiency or overactivation, possibly leading to devastating effects in humans⁶⁶. Immune pathology associated with an uncontrolled immune response might give rise to testicular parenchyma destruction when the BTB is damaged by virus infection⁶⁷, and any associated functional impairment could lead to male infertility.

3.1 Cytokine-mediated infertility

SARS-CoV-2 has proven effects on multiple organs throughout the body 68 , accompanied by immunopathological reactions and high cytokine storms. In the plasma of patients with COVID-19 in intensive care units, higher plasma levels of cytokines were detected, implying that a cytokine storm might aggravate the infection in patients with COVID-19 2,3 . Actually, this coincided with the research that patients with COVID-19 presented a typical profile of hyper inflammation, such as TNF- α , IL-6, and IL-1 β ⁶⁹. Cytokines are beneficial to testicular function and sperm production, as well as testicular

immunity privilege 70-72. However, a high concentration of inflammatory cytokines could contribute to the progression of sexual dysfunction⁷³. Thus, a change in cytokine production problems^{66,74}. Cytokine-mediated lead fertility suppression the can hypothalamic-pituitary-testicular axis could lead to a decrease in serum testosterone, such as IL1 leading to inactivation of the P450/c17 lyase that converts progestins into androgens in immunopathogenesis, which will result in decreased testosterone and sperm production ^{60,75-77}. This corroborated the results showing a dramatic decline serum testosterone in 17 patients with severe COVID-19, which might even predict poor progression of COVID-19 infection⁷⁸. With a history of COVID-19 disease, SARS-CoV-2 infection can attribute to male hypogonadism⁷⁹, thus it is recommended to measure testosterone levels when a patient is detected as positive for SARS-CoV-2 RNA and conduct appropriate testosterone treatment if necessary. Studies detected dramatic increases in IL6 levels in patients with COVID-19 80,81. Immunopathologically, high IL6 expression correlates with a systemic inflammatory milieu that disrupts the integrity of the blood-testis barrier⁸². As a result of blood-testis dissemination, the virus might damage testicular tissue directly. Furthermore, COVID-19-induced changes to the cytokine microenvironment might even lead to testicular cancer⁶⁴, which could have long-term adverse effects on the recovery of patients, and represents a second long-term matter of concern. Hence, it should be noted that the cytokine storm introduced by SARS-CoV-2 could be associated with immunopathogenesis, which might contribute to testicular dysfunction and reduced male fertility. Nevertheless, this hypothesis requires follow-up confirmation, and the exploration of possible short- and long-term consequences on their andrological health.

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

3.2 Inflammation-mediated infertility

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

The blood-testicular barrier might not be a perfect barrier to viruses under systemic or local inflammation⁷. To eliminate the virus infection, an inflammatory cytokines storm can recruit leukocytes, resulting in inflammation characterized by leukocyte infiltration in the interstitial tissue of the testes, which, as a feature of human testicular orchitis, might lead to male infertility. Actually, there is a high risk of that men with SARS-CoV-2 might suffer from an orchitis-like syndrome³⁵. Pan et al. confirmed that six patients (19%) with COVID-19 suffered from orchitis 11. Recently, a study of 12 deceased patients with COVID-19 also revealed viral orchitis characteristics, with T lymphocyte intrusion into the testicular parenchyma, accompanied by significant seminiferous tubular injury¹⁵. Interestingly, the histopathological features of the testes in patients with SARS also overlap with those in patients with COVID-19: All testes being full of leukocyte infiltration and wide-ranging germ cell deterioration, with thickened basement membranes 83, which supports the hypothesis that the coronavirus-induced adaptive immune response might play a vital role in the course of testicular damage and eventually affect fertility. Theoretically, attributed to the hypercoagulable state of vasculitis in patients with COVID-19, the testicular damage could be result of testicular segmental vascularization⁸⁴. One study has shown evidence of direct SARS-COV-2 infection of endothelial cells and diffuse endothelial inflammation⁸⁵, Endothelial dysfunction may be subsequent to organ ischemia⁸⁶, which might provide a rationale for one study that described ischemia-related priapism in a patient with COVID-19 87, suggesting that vasculitis-orchitis might have a crucial role in the development of the testicular injury caused by SARS-CoV-2 infection. Moreover, the intrusion of CD68+

macrophages into the interstitial tissue of the testes <u>could</u> contribute to a decline in steroidogenesis and testosterone⁶⁶, and the change <u>in the</u> hormonal <u>profile</u> might contribute to susceptibility <u>to SARS-CoV-2</u> infection, leading to a more profound pathophysiological role in COVID-19 patients ⁸⁸.

During the SARS-CoV-2 outbreak, SARS-CoV-2 infected-cats <u>also</u> presented a profile of testicular atrophy ⁸⁹, <u>and</u> were reported to have acquired the infection from humans ⁹⁰. <u>Furthermore</u>, studies on chickens infected with coronavirus IBV also showed that immune cells infiltrated into the interstitium of the testis, which was responsible for the reduced fertility ^{25,91}.

In summary, the coronavirus-induced adaptive immune response <u>might</u> lead to testicular damage and endocrine abnormality, eventually <u>disrupting</u> spermatogenesis in <u>patients</u> recovering from COVID-19. However, this hypothesis remains to be confirmed and studies should be undertaken to establish an animal model to <u>determine</u> the underlying pathophysiological mechanisms and to mitigate the risk of testicular injury during COVID-19 disease. Precautions against SARS-CoV-2-induced male infertility should be taken.

3.3 Antibody-mediated infertility by SARS-CoV-2

In SARS-infected testes, Immunohistochemistry analysis showed a large amount of IgG precipitation in the seminiferous epithelium of the testis, as well as in degraded germ cells and Sertoli cells, suggesting that the extensive IgG triggered by a secondary autoimmune response might aggravate the testicular damage ²². In addition, deposits of IgG are associated with autoimmune orchitis (EAO)⁹², which might activate immune cells in the host to produce antibodies against the virus, as well as introducing antibodies into semen⁹³. In patients with

COVID-19, the positive rate of IgG reached 100%⁹⁴, especially antiphospholipid antibodies⁹⁵, which are antisperm <u>antibodies</u> that could interfere with fertilization⁹⁶, suggesting that male patients with COVID-19 should be cautioned against the adverse effects of a high IgG titer on their reproduction ability.

In healthy testis tissue, immune cells and cytokines are beneficial for the development of spermatogonia. However, the immune imbalance associated with infection and inflammation can contribute to male sterility. Overall, in addition to the pathogenic effects of coronavirus, the host-induced immune response against the virus also plays an important role in the overall disease process.

3.4 High fever and steroid-mediated infertility

It is generally believed that high fever can be detrimental to the normal function of the testes. Fever is one of the notable features of COVID-19 ³, and thus might play an important role in testicular dysfunction. Germ cells can develop at a normal pace at temperatures less than 37.8 °C; however, higher temperatures might cause irreversible damage to germ cells. Research confirms that high temperatures can lead to the meiotic arrest of germ cells ⁹⁷. In general, increased body temperature has a negative influence on spermatogenesis and may ultimately lead to male infertility.

In addition, patients with COVID-19 were almost all affected by SARS-CoV-2-related stress and were advised to use steroids (methylprednisolone, 1–2 mg/kg per day)² to treat SARS-CoV-2; however, the stress⁹⁸ and corticosteroid therapy might have adverse effects on sexual function, such as reduced libido and erectile dysfunction ^{99,100}. Leydig cells were also proven to be dysfunctional in glucocorticoid-treated rats ¹⁰¹. Therefore, these observations

309 suggest that the assessment of fertility in patients with COVID-19 is imperative.

4. Conclusion

310

311

312

313

314

315

316

317

318

319

320

This review obtained clues from basic research on other viruses to understand how the novel SARS-CoV-2 virus might generate pathogenic effects in male fertility. We highlighted that male fertility might be highly vulnerable to SARS-CoV-2 infection. Infection with this novel virus not only seriously threatens an individual's overall health, but also might lead to male infertility. Perspectives gained from multi-organ research during the recent epidemic raises the possibility that damage to the male reproductive tract might be an underappreciated result of SARS-CoV-2 infection. Therefore, more attention should be paid to the effects on male fertility of SARS-CoV-2 infection, and should this causal link between SARS-CoV-2 infection and male infertility be confirmed, male patients should consider cryopreserving their sperm to preserve fertility.

321 ACKNOWLEDGMENTS

- 322 This study was supported by a grant from China Postdoctoral Science Foundation
- 323 (2019M661521).
- 324 Authors' roles
- Wenbing Zhu and Chuang Huang conceived and designed the study. Chuang Huang and Xiren
- 326 Ji drafted the manuscript. Wenjun Zhou, Zhenghui Huang, Xiangjie Peng, Liqing Fan, and Ge
- Lin revised the drafts. All authors approved the final version of the manuscript.
- 328 Conflict of interest
- 329 None declared.

330

331

References

- 332 1. Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. *N Engl J Med.* 2020;382(8):727-733.
- 2. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. *Lancet*. 2020;395(10223): 507-336 513.

- 337 3. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *The Lancet*. 2020;395(10223):497-506.
- Li Q, Guan X, Wu P, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. *the new england journal of medicine*. 2020;382(13):1199-1207.
- 5. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. *cell.* 2020;181(2):#5:405;3.
- Wang Z, Xu X. scRNA-seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells. *cells*. 2020;9(4): 920-920.
- 346 7. Salam AP, Horby PW. The Breadth of Viruses in Human Semen. *emerging infectious diseases*. 2017;23(11):1922-1924.a
- 348 8. Klimova RR, Chichev EV, Naumenko VA, et al. Herpes simplex virus and cytomegalovirus in male ejaculate: herpes simplex virus is more frequently encountered in idiopathic infertility and correlates with the reduction in sperm parameters. *voprosy virusologii*. 2010;55(1):27-31.
- Garrido N, Meseguer M, Remohi J, Simon C, Pellicer A. Semen characteristics in human immunodeficiency virus (HIV)- and hepatitis C (HCV)-seropositive males: predictors of the success of viral removal after sperm washing. *Hum Reprod.* 2005;20(4):1028-1034.
- Paoli D, Pallotti F, Turriziani O, et al. SARS-CoV-2 presence in seminal fluid: Myth or reality. *Journal of Andrology.* 2020.
- 356 11. Pan F, Xiao X, Guo J, et al. No evidence of severe acute respiratory syndrome-coronavirus 2 in semen of males recovering from coronavirus disease 2019. *fertility and sterility.* 2020;113(6):1135-358 1139.
- Paoli D, Pallotti F, Colangelo S, et al. Study of SARS-CoV-2 in semen and urine samples of a volunteer with positive naso-pharyngeal swab. *journal of endocrinological investigation*. 2020: 1-4.
- Song C, Wang Y, Li W, et al. absence of 2019 novel coronavirus in semen and testes of COVID-19 patients. *biology of reproduction*. 2020;103(1):4-6.
- Li D, Jin M, Bao P, Zhao W, Zhang S. Clinical Characteristics and Results of Semen Tests Among
 Men With Coronavirus Disease 2019. *JAMA Netw Open.* 2020;3(5):e208292.
- Yang M, Chen S, Huang B, et al. Pathological Findings in the Testes of COVID-19 Patients: Clinical Implications. *european urology focus*. 2020;6(5):1124-1129.
- Liu Y, Yan LM, Wan L, et al. Viral dynamics in mild and severe cases of COVID-19. *lancet infectious diseases*. 2020;20(6):656-657.
- 370 17. Rastrelli G, Di Stasi V, Inglese F, et al. Low testosterone levels predict clinical adverse outcomes in SARS-CoV-2 pneumonia patients. *Andrology*. 2020.
- 372 18. Wang Z, Xu X. scRNA-seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, 373 A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells. *Cells.* 2020;9(4): 374 920.
- 375 19. Kelly JC, Dombrowksi M, O'Neil-Callahan M, Kernberg AS, Frolova AI, Stout MJ. False-Negative COVID-19 Testing: Considerations in Obstetrical Care. In:2020.
- 20. Li W, Shi Z, Yu M, et al. Bats are natural reservoirs of SARS-like coronaviruses. *Science*. 2005;310 (5748):676-679.
- 379 21. Kupferschmidt K. Emerging diseases. Researchers scramble to understand camel connection to MERS. *Science*. 2013;341(6147):702.

- 381 22. Xu J, Qi L, Chi X, et al. Orchitis: a complication of severe acute respiratory syndrome (SARS). *Biol Reprod.* 2006;74(2):410-416.
- Shastri A, Wheat J, Agrawal S, et al. Delayed clearance of SARS-CoV2 in male compared to female patients: High ACE2 expression in testes suggests possible existence of gender-specific viral reservoirs. MedRxiv, In:2020.
- 386 24. Sigureardóttir óG, Kolbj?rnsen, Lutz HJJoCP. Orchitis in a Cat Associated with Coronavirus Infection. 2001;124(2-3):219-222.
- 388 25. Boltz DA, Zimmerman CR, Nakai M, Bunick D, Scherba G, Bahr JMJAd. Epididymal stone formation and decreased sperm production in roosters vaccinated with a killed strain of avian infectious bronchitis virus. 2006;50(4):594-598.
- 391 26. Situ J, Wang W, Long F, et al. Hepatitis E viral infection causes testicular damage in mice. *Virology.* 392 2020;541:150-159.
- 393 27. Govero J, Esakky P, Scheaffer SM, et al. Zika virus infection damages the testes in mice. *Nature*. 394 2016;540(7633):438-442.
- 395 28. Ma W, Li S, Ma S, et al. Zika Virus Causes Testis Damage and Leads to Male Infertility in Mice. *Cell.* 396 2017;168(3):542.
- 29. Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. *Nature*. 2003;426(6965):450-454.
- 399 30. Hoffmann M, Kleine-Weber H, Krüger N, Müller M, Drosten C, Pöhlmann S. The novel coronavirus
 400 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2
 401 for entry into target cells. *bioRxiv*. 2020:2020.2001.2031.929042.
- 402 31. Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. *Nature*. 2020;579(7798):270-273.
- Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A Human Homolog of Angiotensin -converting Enzyme CLONING AND FUNCTIONAL EXPRESSION AS A CAPTOPRIL-INSENSITIVE CARBOXYPEPTIDASE. *journal of biological chemistry.* 2000;275(43): 33238-33243.
- Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. *febs letters*. 2002;532(1):107-110.
- Douglas GC, O'Bryan MK, Hedger MP, et al. The novel angiotensin-converting enzyme (ACE) homolog, ACE2, is selectively expressed by adult Leydig cells of the testis. *endocrinology*. 2004; 145(10):4703-4711.
- Corona G, Baldi E, Isidori AM, et al. SARS-CoV-2 infection, male fertility and sperm cryopreservation: a position statement of the Italian Society of Andrology and Sexual Medicine (SIAMS) (Societa Italiana di Andrologia e Medicina della Sessualita). *J Endocrinol Invest.* 2020;43(8): 1153-1157.
- 416 36. Zhao J-m, Zhou G-d, Sun Y-l, et al. Clinical pathology and pathogenesis of severe acute respiratory syndrome. *chinese journal of clinical hepatology*. 2003;17(3):217-221.
- 418 37. Puggioni G, Pintus D, Melzi E, et al. Testicular Degeneration and Infertility following Arbovirus Infection. *J Virol.* 2018;92(19).
- Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2. *Nature*. 2020; 581(7807):221-224.
- 422 39. Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. *nature*423 *reviews microbiology.* 2009;7(6):439-450.
- 424 40. Stanley KE, Thomas E, Leaver M, Wells D. Coronavirus disease-19 and fertility: viral host entry

- protein expression in male and female reproductive tissues. *fertility and sterility.* 2020;114(1): 33-43.
- 427 41. Neto FT, Bach PV, Najari BB, Li PS, Goldstein M. Spermatogenesis in humans and its affecting factors. *Semin Cell Dev Biol.* 2016;59:10-26.
- 429 42. Guan X, Chen F, Chen P, et al. Effects of spermatogenic cycle on Stem Leydig cell proliferation and differentiation. *Mol Cell Endocrinol*. 2019;481:35-43.
- 431 43. Eroschenko VP, Wilson WO, Siopes TD. Function and histology of testes from aged coturnix maintained on different photoperiods. *J Gerontol.* 1977;32(3):279-285.
- 433 44. Uraki R, Hwang J, Jurado KA, et al. Zika virus causes testicular atrophy. *science advances.* 2017;3(2): 1602899-1602899.
- 435 45. Chen S-R, Liu Y-X. Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling. *reproduction*. 2015;149(4).
- 437 46. Anderson RA, Irvine DS, Balfour C, Groome NP, Riley SC. Inhibin B in seminal plasma: testicular origin and relationship to spermatogenesis. *Hum Reprod.* 1998;13(4):920-926.
- 439 47. Mahmoud AM, Comhaire FH, Depuydt CE. The clinical and biologic significance of serum inhibins in subfertile men. *Reprod Toxicol.* 1998;12(6):591-599.
- 441 48. Cavanagh D. Nidovirales: a new order comprising Coronaviridae and Arteriviridae. *Arch Virol.* 1997;142(3):629-633.
- 443 49. Gallardo RA, Hoerr FJ, Berry WD, van Santen VL, Toro H. Infectious bronchitis virus in testicles and venereal transmission. *Avian Dis.* 2011;55(2):255-258.
- Jones RC. Europe: history, current situation and control measures for infectious bronchitis. brazilian journal of poultry science. 2010;12(2):125-128.
- Villarreal L, Brandão PE, Chacón JL, et al. Orchitis in roosters with reduced fertility associated with avian infectious bronchitis virus and avian metapneumovirus infections. 2007;51(4):900-904.
- Guan W-j, Ni Z-y, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. *the new england journal of medicine*. 2020;382(18):1708-1720.
- Verma S, Saksena S, Sadri-Ardekani H. ACE2 receptor expression in testes: implications in coronavirus disease 2019 pathogenesist. *biology of reproduction.* 2020.
- 453 54. Aversa A, Jannini EA. COVID-19, or the triumph of monogamy? *minerva endocrinologica.* 2020; 454 45(2):77-78.
- 455 55. Gallardo RA, Hoerr FJ, Berry WD, Santen VLv, Toro H. Infectious Bronchitis Virus in Testicles and Venereal Transmission. *avian diseases*. 2011;55(2):255-258.
- 457 56. Perry MJ, Arrington S, Neumann LM, Carrell D, Mores CN. It is currently unknown whether SARS-CoV-2 is viable in semen or whether COVID-19 damages spermatozoa. *Andrology*. 2020.
- Boltz DA, Nakai M, Bahra JM. Avian infectious bronchitis virus: a possible cause of reduced fertility in the rooster. *Avian Dis.* 2004;48(4):909-915.
- Holtmann N, Edimiris P, Andree M, et al. Assessment of SARS-CoV-2 in human semen—a cohort study. *Fertility and Sterility*. 2020;114(2):233-238.
- Benyeda Z, Mató T, Süveges T, et al. Comparison of the pathogenicity of QX-like, M41 and 793/B infectious bronchitis strains from different pathological conditions. *avian pathology.* 2009;38(6): 449-456.
- 466 60. Boltz DA, Nakai M, Bahr JM. Avian Infectious Bronchitis Virus: A Possible Cause of Reduced Fertility in the Rooster. *avian diseases*. 2004;48(4):909-915.
- 468 61. Villarreal LYB, Brandão PE, Chacón JLV, et al. Orchitis in Roosters with Reduced Fertility Associated

- with Avian Infectious Bronchitis Virus and Avian Metapneumovirus Infections. *avian diseases.* 2007; 51(4):900-904.
- 471 62. Liu Y, Ding Z. Obesity, a serious etiologic factor for male subfertility in modern society.
 472 reproduction. 2017;154(4).
- 473 63. Li N, Wang T, Han D. Structural, cellular and molecular aspects of immune privilege in the testis. 474 *frontiers in immunology.* 2012;3:152-152.
- 475 64. Loveland KL, Klein B, Pueschl D, et al. Cytokines in Male Fertility and Reproductive Pathologies: 476 Immunoregulation and Beyond. *frontiers in endocrinology*. 2017;8:307-307.
- 477 65. Zhao S, Zhu W, Xue S, Han D. Testicular defense systems: immune privilege and innate immunity.
 478 *cellular & molecular immunology.* 2014;11(5):428-437.
- Hedger MP, Meinhardt A. Cytokines and the immune-testicular axis. *Journal of Reproductive Immunology*. 2003;58(1):1-26.
- 481 67. Mruk DD, Cheng CY. The Mammalian Blood-Testis Barrier: Its Biology and Regulation. *Endocr Rev.* 2015;36(5):564-591.
- 483 68. Liu Q, Wang RS, Qu GQ, et al. Gross examination report of a COVID-19 death autopsy. *Fa Yi Xue Za Zhi.* 2020;36(1):21-23.
- 485 69. Pedersen SF, Ho Y-C. SARS-CoV-2: a storm is raging. *journal of clinical investigation.* 2020;130(5): 2202-2205.
- 487 70. Lui W-Y, Lee WM, Cheng CY. Transforming Growth Factor-β3 Perturbs the Inter-Sertoli Tight
 488 Junction Permeability Barrier in Vitro Possibly Mediated via Its Effects on Occludin, Zonula
 489 Occludens-1, and Claudin-11. *endocrinology*. 2001;142(5):1865-1877.
- Dobashi M, Fujisawa M, Yamazaki T, Okada H, Kamidono S. Distribution of intracellular and extracellular expression of transforming growth factor-beta1 (TGF-beta1) in human testis and their association with spermatogenesis. *asian journal of andrology.* 2002;4(2):105-109.
- 493 72. Itman C, Mendis SHS, Barakat BM, Loveland KAL. All in the family: TGF-β family action in testis
 494 development. *reproduction*. 2006;132(2):233-246.
- Maiorino MI, Bellastella G, Giugliano D, Esposito K. From inflammation to sexual dysfunctions: a journey through diabetes, obesity, and metabolic syndrome. *journal of endocrinological investigation*. 2018;41(11):1249-1258.
- Ochsenkühn R, O'Connor AE, Hirst JJ, Baker HWG, Kretser DMd, Hedger MP. The relationship between immunosuppressive activity and immunoregulatory cytokines in seminal plasma: Influence of sperm autoimmunity and seminal leukocytes. *journal of reproductive immunology*. 2006;71(1):57-74.
- 502 75. Hales DB. Interleukin-1 inhibits Leydig cell steroidogenesis primarily by decreasing 17 alpha-503 hydroxylase/C17-20 lyase cytochrome P450 expression. *endocrinology*. 1992;131(5):2165-2172.
- Janssen SJ, Kirby JD, Hess RA, et al. Identification of epididymal stones in diverse rooster populations. *poultry science*. 2000;79(4):568-574.
- Mahecha GAB, Oliveira CA, Balzuweit K, Hess RA. Epididymal lithiasis in roosters and efferent ductule and testicular damage. *reproduction*. 2002;124(6):821-834.
- 78. Pozzilli P, Lenzi A. Commentary: Testosterone, a key hormone in the context of COVID-19 pandemic. *Metabolism.* 2020;108:154252.
- Wambier CG, Goren A. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is likely to be androgen mediated. *journal of the american academy of dermatology.* 2020;83(1): 308-309.

- S W, Q Y, S F, et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). In:2020.
- 515 81. Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. *ebiomedicine*. 2020:102763-102763.
- 517 82. Zhang H, Yin Y, Wang G, Liu Z, Liu L, Sun F. Interleukin-6 disrupts blood-testis barrier through inhibiting protein degradation or activating phosphorylated ERK in Sertoli cells. *scientific reports*. 2015;4(1):4260-4260.
- 520 83. Xu J, Qi L, Chi X, et al. Orchitis: a complication of severe acute respiratory syndrome (SARS). 2006; 74(2):410-416.
- Leisman DE, Deutschman CS, Legrand M. Facing COVID-19 in the ICU: vascular dysfunction, thrombosis, and dysregulated inflammation. *intensive care medicine*. 2020;46(6):1105-1108.
- 524 85. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. *the* 125 lancet. 2020;395(10234):1417-1418.
- Bonetti PO, Lerman LO, Lerman A. Endothelial Dysfunction A Marker of Atherosclerotic Risk. *arteriosclerosis thrombosis and vascular biology.* 2003;23(2):168-175.
- 528 87. Lamamri M, Chebbi A, Mamane J, et al. Priapism in a patient with coronavirus disease 2019 (COVID-19): A case report. *Am J Emerg Med.* 2020.
- Salonia A, Corona G, Giwercman A, et al. SARS-CoV-2, testosterone and frailty in males (PROTEGGIMI): A multidimensional research project. *Andrology*. 2020.
- 532 89. Sigurdardottir OG, Kolbjornsen O, Lutz H. Orchitis in a cat associated with coronavirus infection. *J Comp Pathol.* 2001;124(2-3):219-222.
- 534 90. Zhang Q, Zhang H, Huang K, et al. SARS-CoV-2 neutralizing serum antibodies in cats: a serological investigation. In:2020.
- 536 91. Benyeda Z, Szeredi L, Mató T, et al. Comparative histopathology and immunohistochemistry of QX-like, Massachusetts and 793/B serotypes of infectious bronchitis virus infection in chickens.

 538 *journal of comparative pathology.* 2010;143(4):276-283.
- ltoh M, Hiramine C, Tokunaga Y, Mukasa A, Hojo K. A new murine model of autoimmune orchitis induced by immunization with viable syngeneic testicular germ cells alone. II. Immunohistochemical findings of fully-developed inflammatory lesion. *autoimmunity*. 1991;10(2): 89-97.
- 543 93. Moldoveanu Z, Huang WQ, Kulhavy R, Pate MS, Mestecky J. Human male genital tract secretions: both mucosal and systemic immune compartments contribute to the humoral immunity. *J Immunol.* 2005;175(6):4127-4136.
- 546 94. Long QX, Liu BZ, Deng HJ, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. 547 *nature medicine*. 2020;26(6):845-848.
- 548 95. Connell NT, Battinelli EM, Connors JM. Coagulopathy of COVID-19 and antiphospholipid antibodies. *journal of thrombosis and haemostasis*. 2020.
- 550 96. Chiu WWC, Chamley LW. Clinical associations and mechanisms of action of antisperm antibodies. 551 *fertility and sterility.* 2004;82(3):529-535.
- 552 97. Xu J, Xu Z, Jiang Y, Qian X, Huang Y. Cryptorchidism induces mouse testicular germ cell apoptosis 553 and changes in bcl-2 and bax protein expression. *journal of environmental pathology toxicology* 554 *and oncology.* 2000;19:25-33.
- 555 98. Chan JC, Morgan CP, Leu NA, et al. Reproductive tract extracellular vesicles are sufficient to transmit intergenerational stress and program neurodevelopment. *nature communications*.

557

560

561

562

563

100.

101.

2020;11(1).

558 99. Ln C, Am M, Mm D, et al. Glucocorticoids: their role on gonadal function and LH secretion.
559 *minerva endocrinologica.* 1996;21(2).

Scaroni C, Favia G, Lumachi F, et al. Unilateral adrenal tumor, erectile dysfunction and infertility in a patient with 21-hydroxylase deficiency: effects of glucocorticoid treatment and surgery. experimental and clinical endocrinology & diabetes. 2003;111(1):41-43.

Gao H-B, Tong M-H, Hu Y-Q, Guo Q-S, Ge R, Hardy MP. Glucocorticoid Induces Apoptosis in Rat Leydig Cells. *endocrinology*. 2002;143(1):130-138.